精度、条件和正确的切削参数,刀具轴向和径向上的跳动精度也很重要。
例如,如果未将刀片正确地安装到铣刀中,则铣刀周围的切削刃会迅速损坏。
在切削钛金属时,其它一些因素,例如刀具制造公差不良、磨损和刀具受损、刀柄有缺陷或质量差、机床主轴磨损等等,都会在很大程度上影响到刀具寿命。观察结果表明,在所有加工表现不佳的案例中,80%都是由这些因素所造成。
尽管大多数人喜欢选用正前角槽形刀具,但事实上稍带负前角槽形的刀具能以更高的进给去除材料,并且每齿进给量可达0.5mm。但是这同时也意味着必须保持最佳稳定状态,即机床应非常坚固,且装夹应极其稳定。
除进行插铣(最好使用圆刀片)之外,应尽量避免使用90主偏角,这样做通常有助于提高稳定性和获得总体性能,当在浅切深下使用时尤应如此,在进行深腔铣时,一种值得推荐的做法是通过刀具接柄而使用长度可变的刀具,而不是在整个工序中使用单一长度的长刀具。
调整切削参数以克服因降低每齿进给量而引起的振动是传统的解决方法,但这种方法并不恰当,因为它会对刀具寿命和切削性能产生灾难性影响。可转位刀片需要一定量的切削刃倒圆,以增加切削刃强度和获得更好的涂层粘附力。
在铣削钛金属时,要求刀具至少以最小的进给量工作——通常为每齿0.1mm。如果扔有振动趋势,则刀片损坏或刀具寿命缩短问题将不可避免。可能的解决方法包括精确计算每齿进给量,并确保它至少为0.1mm。
另外也可降低主轴转速,以达到最初的进给率。如果使用最小的每齿进给量,而主轴转速却不正确,则对刀具寿命的影响可高达95%。降低主轴转速通常可提高刀具寿命。
一旦确立了稳定工况,就可相应地提高主轴转速和进给量来获得最佳性能。另一种做法是从铣刀中取出一些刀片或选择含刀片较少的铣刀。
钛合金零件工装装夹技术
钛合金零件装夹原则是:
(1)粗加工阶段夹紧力要大,防止在大切削力加工过程中零件松动;精加工阶段夹紧力要小,防止装夹变形。
(2)夹紧力作用在刚性好的地方,且施力点尽可能多。
(3)对于刚性较差的薄壁结构零件应增加适当的辅助装置,增加整个加工工艺系统的刚性。
国外大量采用了自动化程度较高的专用夹具,如采用液压可调整工装,在加工零件外轮廓中当切削刀具接近压紧点时压板自动让开,刀具切削后压板立即返回原位压紧零件。还有一些公司采用与被加工零件相同的材料制造夹具、压板,装夹时与零件形成一体,切削过程中不必考虑避让夹具压板,加工效率明显提高。
国内对钛合金航空结构件数控加工中的工装夹具缺少较为深入的研究和开发,更多的是采用简单机械装夹方式。简单机械装夹方式受人为因素影响,夹紧力不容易控制。还有一些平面型单面结构、厚度较小结构件的夹紧采用真空吸附方式,而真空吸附方式对于厚度较大、双面结构的结构件吸附效果较差。
钛合金加工刀具技术
随着高速切削技术的发展,高速切削刀具材料和刀具制造技术都发生了巨大的变化,新材料、新涂层、新技术不断涌现。然而,目前刀具技术仍是限制钛合金等难加工材料加工效率提高的一个技术瓶颈。由于钛合金弹性模量低、弹性变形大、切削温度高、导热系数低、高温时化学活性高,使得切削粘刀现象严重,容易加剧刀具磨损甚至破损,导致钛合金切削加工性较差。因此钛合金加工刀具技术成为制约钛合金高效加工的关键技术之一。
从提高金属去除率的角度出发,目前钛合金航空结构件高效粗加工刀具主要有玉米铣刀、插铣刀、大进给铣刀以及组合刀具等(如图3所示)。其中,采用玉米、插铣刀以及组合刀具等对机床功率和扭矩有一定的要求,而大进给铣刀对机床功率和扭矩以及刚性无特殊要求。已有加工应用表明,采用大进给铣刀,切削效率可有效提高50%以上。
从控制零件的加工精度出发,钛合金航空结构件高效精加工刀具主要为整体螺旋立铣刀,如图4所示。采用密齿刀具(5~10齿)可以显著改善加工表面粗糙度,而采用不等齿距立铣刀,可有效提升极限切深。
随着新型刀具材料的出现和新型刀具的不断发展,国内外针对钛合金切削加工刀具方面,做了大量的研究工作。如T. Kitagawa等对硬质合金刀具加工钛合金切削机理进行了研究,表明硬质合金刀具的晶粒大小以及Co元素含量的高低直接影响其切削钛合金时的性能,并指出YG类硬质合金刀具更适合加工钛合金。J. Vigneau研究了涂层刀具切削钛合金的切削性能,传统的涂层多为TiC和TiCN涂层,在切削过程中Ti元素易与工件发生亲和而加快刀具磨损速度。CBN由于具有硬度高,耐热性好而且有很高的稳定性,是高速切削钛合金的良好刀具,这种刀具价格比较昂贵,国内有关机构还没有进行深入的研究。在刀具结构设计方面,G. D. Vasilyuk通过增大刀尖圆弧半径来增加切削阻尼,从而消除颤振;C.R.LIU在切削过程中通过在线控制刀具前角、后角、刃倾角来抑制颤振;德国学者V. Sellmeiert对不等齿距立铣刀稳定性进行实验和理论研究等。